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SUMMARY

A study is made for the development and computations of the separating
and reattacing shear flows. The highlight of the study is an attempt to
predict the third-moments of turbulent velocity which is responsible for the
diffusion transport of the Reynolds stresses. The present computations show
that the third-moments obtained by emplioying the low-Reynolds number model of
transport equations improve the prediction of the third-moments.

The modeiing for scalar variables are also performed for the heat transfer
computations. Since the transport equations for <uie> and <uiuje> have been
given in the last NASA CR, the study has been extended further to the modeling

2 2

of <e">, <uie > and o (dissipation rate for <62>). The formulations are

shown in this report.
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INTRODUCTION

Separation and recirculation of flow is encountered in a vast array of
engineering applications. This phenomenon of flow separation and
recirculation associates itself with higher turbulence levels which not only
render the flow greater analytical complexity but also would result in highly
augmenting its heat transfer and momentum aspects. Thus, demand for
mathematical models that can predict any complex turbulent flows is increasing
as well as experimental measurements for better understanding of such complex
flows. It has been observed by many researchers [1,2] that non-isotropic
turbulence effects are quite significant in separating shear flows and
consequently occurring reattaching and recirculating flows beyond a step.
Moreovef, turbulent third-moments and corresponding triple scalar-velocity
products are equally predominant in the separated shear flow field interacting
with turbulent boundary layers.

The most noticeable features of the experimental observations reported by
Chandrsuda and Bradshaw [1] and later by Driver and Seegmiller [3] are that
the shapes of the third-order moments of turbulence fluctuating velocity
change rapidly along the separated shear layer due to distortion of the large
eddies by effectively irrotational mechanisms. The implication of these
observations in separating and reattaching shear layer is that algebraic
relations between the third-order moments and the Reynolds stresses are likely
to be inadequate for strongly perturbed flows, making it necessary to use
transport equations for the third-moments.

This study is conducted to develop new models of turbulence with the
third-order closure in order to predict the turbulent flow through a duct with
a relatively complex geometry. As a basic study of modeling, a backward-facing

step is chosen to carry out computations. The advantage of having such a flow
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geometry is that a number of experimental data are available in the literature
for comparison with present results. Computations of the momentum and
temperature fields in the flow domain being considered entail the solution of
the time-averaged transport equations containing the second-order turbulent
fluctuating products. The third-order products, which are responsible for the
diffusive transport of the second-order products, attain greater significance
in separating and reattaching flows. The following chapter describes the

modeiing of these transport equations.

MATHEMATICAL MODELS FOR THIRD-MOMENTS

The transport equations for the Reynolds stresses can be given as

2

axk (Uk <uiuj>) =P.. - €:s: * by + Ds (1)

ij ij ij ij
where Pij and ¢ij' respectively, represent the production and the
pressure-strain rates. In the parenthesis of the above equations, the upper
case letter U and the Tower case letter u represent the Reynolds averaged and
the instantaneous values of the velocity, respectively. The symbol < >
denotes that the argument inside this bracket is ensemble-averaged. The
pressure-strain correlation ¢1j is evaluated by using the model of Launder

et al. [4].

The diffusion rate, Dij’ contains the terms given as follows:

<u.Dp> <u.p>
3 uiP uiP

D45 = - ax, [<ugusue> + —= 8500 = 84y
o<u.u.> ou ou
- — 1) _k _k
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where p, p, and v represent, respectively, the turbulent fluctuating
pressure, the fluid density and the fluid kinematic viscosity. The symbol &
denotes the Kronecker delta. Since the diffusion rate of the Reynolds
stresses is governed by the gradient of the third-moments <u1.ujuk
becomes necessary to evaluate the third-moments exactly. Thus, the

>, it

transport equations for such third-moments are developed and shown as follows.
The third moments, <uiujuk>, can be evaluated by formulating

[

their transport equations as
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In the above equations, terms I and II represent, respectively, the
generation rates due to mean strain and the Reynolds stresses. Term III is
responsible for the generation rate if the Gaussian approximation is applied;
this can be merged into term II. Term IV, which is the pressure-stress
correlation, plays a significant role in redistributing the tenmsor and in
diffusing due to fluctuating pressure. Term V can be divided into the
molecular diffusion rate and the dissipation rate.

In order to account for the viscous effects that are predominant near the
wall, a low-Reynolds number modification needs to be incorporated in the
transport equations of the third-moments.

The theory behind this low-Reynolds number model is based upon the fact
that the scale of the eddies created in the shear layer changes rapidly as the
flow approaches the solid wall by enhancing the turbulence energy dissipation
rate. Thus, the model should be devised to control the size of the eddy.

This was done by evaluating the correct expression for the dissipation rate,
¢, by formulating it in each layer near the wall such as the viscous
sublayer, the buffer layer, and the fully turbuient core flow. This

controller is incorporated in the pressure-stress term (Term IV in Eq. (3)) in
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order to adjust the time of rate change of the third-moments of turbulence

velocity as follows:

eijk = Pressure-stress term
(4)
= €
CY K <uiujuk>
and
eijk W = near-wall correction for pressure-stress term
3/2 1/2 (%)
_ 1 k ak 2
= CY K <uiujuk> {max [CYw E;;—, 2v (—sg—-) 1}

where k and y represent the turbulence energy and the distance from the wall,
respectively.

The dissipation rate is given as:

Dissipation due to viscous effect

i

ijk
(6)
= C ck1/2
[ §
and
Dijk = Diffusion due to viscous effect
) (1)
9 )
= = (v = <u,u;u.>)
axl axl i“jk

The values for the constants are listed in Table 1.




TABLE 1. Recommended values for the constants

Low-Reynoids number model

9
ax (U£<uiujuk>) + P

= P..
N ijk,1

* eyt Dysx

ijk,2 ¥ %k * Oijk,w

¢ C
Cg ¢y Y CYW 2
1.0 2.55 3.0 ( Tow-Re no. model) 8.0 0.2
5.8 (high-Re no. model)
The models considered in this study are defined as follows:
High-Reynolds number model
2 (U, <u;u.u,>) =P,. + P.. +0... +D
axg v iTjk ijk,1 ijk,2 ijk ijk
where
Pijk,l = production due to mean strains
al al. ou.
K i — 3
= - > — ¢+ < > — u>
cg(<uiuju! axl + ujukui axl * <uku1u1 axl)
Pijk 2 = Production due to Reynolds stresses interacting with their
gradients
o<u.u.> o<u.u, > a<u, u.>
- - — 3 — 1 k° ki
= = (<upuy> ax, <Ujuy> ax, *oSuyug> ax, )
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SOLUTION PROCEDURE

Figure 1 shows the solution domain of the fiow field. The inlet section
is located approximately two step heights upstream from the step and the
outlet section about sixty step heights downstream therefrom. After several
grid tests it was discerned that the system with 62 x 62 node points gives
results independent of the grid. More details are given in the following
chapter. The computations were performed using the 62 x 62 variable grid with
the grid expanding linearly at the rate of 2% in x-direction and at 3% in
y-direction. Figure 2 shows the numerical grid used in computations (5:1
expansion in y-direction).

Computations of the transport equations described in the preceding
section are achieved by using the finite volume method [5]. The jterative
procedure is terminated when the maximum value of the relative residual
sources of U, V, and mass balance falls below 1%. However, the computations
of the triple products are continued until the relative residual sources fall

below 3 x 10 S,

RESULTS AND DISCUSSION

Figures 3 and 4 show the computed skin friction coefficient, Cf, and
pressure coefficient, Cp, respectively, along the bottom wall. The results
are also compared with the experimental data of Driver and Seegmiller [3].

These coefficients are defined as follows:

R R
Cf’l 2 (12)
2 P VIN
P-7P
c = —ref (13)
p 1 UZ
2 P VIN




where T and P represent the wall shear stress and the Reynolds averaged
pressure, respectively. The subscript IN stands for inlet and ref indicates
the reference location which is two step heights upstream of the step.

Computations have been performed with several different grid systems
ranging from 32 x 32 to 62 x 62. It is shown in these figures that fair grid
independent status is attained with the grid system finer than 52 x 52. For
this reason the grid with 62 x 62 has been used in the rest of the
computations. The agreement between the computation and the measured data is
reasonably well except the discrepancy for the pressure coefficient beyond the
reattachment point.

Figure 5 shows the mean velocity profiles at two downstream locations.
The computed profiles are compared with the experimental data taken by
Chandrsuda and Bradshaw [1]. The measured data were obtained by using two
different methods: one by pressure-probe and the other by hot-wire.

Agreement between the computation and the two sets of the experiment is quite
reasonable. It is also noticed that the trend of the computed results accords
more with the hot-wire measurements than with the pressure-probe data.

Figure 6 shows the profiles of the Reynolds stresses at several locations
downstream of the step. As seen in this figure agreement of the normal
stresses (<uu> and <vv>) and the shear stress (<uv>) between computed results
and the measurement is fairly well within the error of 10% beyond the
reattachment position; however, the computed <uu> and <uv> profiles within the
recirculating region do not agree with the measured levels at the peak
positions. This disagreement seems to be larger near the step, but both
results coincide toward far downstream.

Probably, the generation rate and the pressure-strain correlation

associated with the secondary mean strain rates (oV/ax) for the transport
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equation of <uv> is not as high as it should be in this near step region,
whereas the actual shear stress level might be enhanced due to the cornering
flow at the bottom of the step.

Figure 7 represents the comparison of the third-moments of turbulence
fluctuating velocity between the high-Reynolds number and low-Reynolds number
models. In this figure large changes are observed between these two models.
The high-Reynolds number model gives higher levels in the near-wall region
than the low-Reynolds number model. This fact indicates that the terms
represented by Eqs. (5) and (6) play a significant role in the determination
of the third-moments. In the near-wall region, the eddies created through the
separated shear layer tend to become smaller, and as a result, the rate of
turbulence energy dissipation increases rapidly. This is why the effect of
¢ added in the model promotes the dissipation action of <uiujuk> in
the near-wall region giving lower levels of the third-moments toward the
solid wall. Agreement of the computations by the low-Reynolds number model,
thus, is considerably improved.

Figure 8 represents the comparisons of the low-Reynolds number model with
other algebraic models developed by several researchers: Hanjalic and
Launder [6], Cormack et al. [7], Daly and Harlow [8], and Shir {9]. As shown
in this figure, the results obtained by the transport equations for the
third-moments give generally better agreement with the experimental data than
the results obtained by using the corresponding algebraic models. However, it
is also noticed that the levels of the third-moments predicted by using the
transport equations are very high across the separated shear layer above the
recirculating flow, although they agree reasonably well with the experimental

data at the location near the reattachment and the downstream region.
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Another advantage of using the transport equations is that a low-
Reynolds number correlation can be incorporated in order to account for the
viscous effect near the wall as well as the convection effect. Thus, the
prediction by using the transport equations is closer to the measured data
near the wall throughout the flow region.

The above discussion can be summarized as follows:

1. The Reynolds-stress model developed in this study is shown to predict the
separating and reattaching shear flows properly.

2. The third-order turbulence velocity fluctuating tensor denotes rapid
changes in the reattaching and recirculating flow regions. This behavior
can be predicted by developing the transport equations for the
third-moments of turbulence velocity.

3. It was shown that by promoting the dissipation effect of the third-
moments in the near-wall region the prediction of the third-moments were
considerably improved. This low-Reynolds number model for the
third—homents provides more universal results than do the algebraic
models.

Figures 9-11 show variations of the computed Reynolds stresses. Figures
12-15 show variations of the triple products of the velocity fluctuations. It
is clear that the sharp changes in the levels of the triple products are

produced in the separating shear flow region which diminish toward downstream.

DEVELOPMENT OF TEMPERATURE FLUCTUATING EQUATIONS

A new model has been under developing for the computation of heat
transfer rates in a separating and recirculating flow. Since a transport
equation approach is required for better prediction of such compliex flows,

temperature fluctuating variables with interaction with velocity fluctuating
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transport are correlated with defined hydrodynamic and Reynolds averaged
velocity fluctuations.

In the last report [10] the formulations and the preliminary computed
results were shown for the variables of <u,e> and <uiuje>.

report formulations of other variables such as

2
= <p°>
Ree 0 >/2
2
. = <Yy. >
Riep = <Y;®
and
30 a6
€, = al<————>
(2] OX.9X.
J J

are presented where o and © denote, respectively, the thermal diffusivity

and fluctuating component of temperature.

dissipation rate of turbulence temperature energy level, corresponds to ¢.
The transport equation for Ree was deveioped because it appears in
the buoyant source term of the vertical heat flux equation of stratified
flows. For this reason the transport equations for ¢
developed in order to close the Ree equation.
important because a fluid element receives an upthrust (buoyant effect)

proportional to «6g if its instantaneous temperature exceeds the average

temperature at the horizontal plane by 6.

enthalpy flux proportional to «8g(7T + ©) which upon time averaging

reduces to °gRee and increases the overall levels of <ve> [11].
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The buoyant term is

This will produce an extra
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Scalar Double Product Ree

Transport equation for Ree is given as:

Rog aT 3

00
U. = - <U.0> T - ¢, - — [<R, - a —] (17)
j axj j axj ° axj jee axj
(1) (1) (111) (iv) (v)

Equation (17) is explained as follows:
(i) Rate of change of turbulence temperature energy level
balances with
(i1) Production of turbulence temperatures energy by mean temperature
gradient
minus
(iii) Energy dissipation rate of turbulence temperature by molecular action
plus
(iv) Diffusion transport due to turbulence velocity fluctuation
plus
(v) Diffusion transport due to molecular action
The dissipation rate for the double product of the temperature

fluctuations, ¢., is obtained in a similar manner as is done for ¢.

9’
d¢ au 2
Uj 5?9 =-2a <:2 axk> gl - 2a <y g: > axa ;x
J 3% Tk i %k %
(i) (ii) (111)
ol au
~2a Rt Sh gl B KA (18)
J Tk J j 773 Tk
(iv) (v)
2 oc
d © 2 ) ! [2)
- 2 <a > [<e u.> - a —]
an axk BXJ 6] axj
(vi) (vii) (viii)




where

'L, 28 36,

- a P
o X X,
J J

€ Unaveraged quantity
Equation (18) is interpreted as follows:
(i) Rate of change of €o
balances with
(ii) Generation due to mean temperature gradient
plus
(iii) Secondary generation due to mean temperature gradient
plus
(iv) Generation due to mean vortex stretching action
plus
(v) Generation due to turbulence fluctuations
minus
(vi) Destruction of o due to fine scale turbulence interactions
plus
(vii) Diffusion rate due to turbulence velocity
plus

(viii) Diffusion rate due to molecular action.

It is generally recognized that the contribution of terms (ii), (iii)

and (iv) is negligibly small in high turbulent flows. Thus these terms can be

dropped.

Terms (v) and (vi) are treated in the same manner as e:

(v) + (vi) ='[Cce] Po = C g
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where

P

]

- <y, 6>

k axk

ar_

Term (vii) may be given as

R

u

16

J

o in Eq. (17) is stil) undetermined. This is modeled currently as

Rise _

oX.
Xj

(1)

-2 <U.u.60> — - <u,0"> —

+

+

LA
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[2 uJe

-
X [c

j D
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X

2
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P axi
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J
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66 iee
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Equation (23) may be explained as
(i) Rate of change of <uiez>
is balanced with
(ii) Generation due to mean temperature gradient
plus
(iii) Generation due to mean vortex sketching
plus
(iv) Generation due to turbulence
plus
(v) Diffusion due to turbulence
plus
(vi) Diffusion due to thermal molecular action
plus
(vii) Diffusion due to momentum molecular action
plus
(viii) Pressure-scalar correlation
minus
(ix) Buoyancy effect.

The pressure-scalar correlation is split into two terms as

2 € ou.

p 86 2. 6 2 i
< == =(C_. <U,06>cs— -0 _ <y 6> —
P axi pl i Ree p2 'k axk

The buoyancy term is given as

2. AT
(ix) = - <> g aT_ 852

Thus, by neglecting molecular diffusion terms we can solve Eqg. (23) after

(24)

(25)

determining coefficients appearing in diffusion (term (v)) and pressure-scalar

correlation (Eq. (24)).
...]6_
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COMPUTATIONAL DOMAIN

FIGURE 1. Solution domain--Backward-facing step geometry with the
separating, recirculating and redeveloping regions.




Numerical grid used in computations.

FIGURE 2.
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FIGURE 7.

Third-moment profiles downstream of the step: Comparison
of the low and high-Reynolds number models.
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